Designing and Coding Secure Systems

Kenneth Ingham and Anil Somayaji
September 29, 2009

1 Course overview

This class covers secure coding and some design issues from a language neutral approach—
you can make mistakes such as input validation or failing to use defense in depth in any
language. The course stresses how to avoid security problems through the proper implemen-
tation of programs. This class makes heavy use of labs where the instructor presents a case
study and the students discuss how to apply the concepts presented to the example under
discussion; the example can also be a system in which the students are involved.

This class is appropriate for students who are programmers; you cannot code your way
out of a bad design, and recognizing design flaws earlier allows them to be fixed with fewer
resources. This class is also appropriate for program designers and system architects; they
need to understand how to design in security from the beginning.

2 Course objectives

Students attending this class will learn:
e Why we have had problems writing secure code.
e Security belongs in all phases of the software development lifecycle.
e What is a threat model and how does it help with security.
e The design principle of secure failure modes.
e Important language-independent coding issues such as input validation.

e Concepts of authorization and access control with references to the Java and .NET
libraries.

e How, what, when, why, and where to log.

e Issues affecting web server security.



3

How to perform a software security audit.

How to test for security.

Student background

If you are attending this class, then we assume that

4

You are familiar with programming in a major language (e.g., Java, C, C++, C#, etc).
You are a programmer, software designer, or system architect.

You want to produce more secure systems.

Logistics

The class lasts two days. The student computers can run either Windows or Linux. The
class uses the following software:

Firefox Web Developer toolbar

e IE 6 or 7 (on Windows distribution) or Firefox 2 (on Linux distribution but needed for

Windows) (optional)
Internet access (optional)
Java JDK 1.6 (for WebGoat)
PortSwigger burp suite
WebGoat v5.2

a web browser

Since this is a discussion class, computers are not absolutely necessary. If computers are
available, the student computers should have Internet access, including the necessary config-
uration for this to work. However, an isolated network can also work. If the classroom has
computers, a web server is needed.

The class needs a web server for the class web site. The instructor’s laptop may be this
web server; otherwise the machine provided in the classroom for the instructor is a good
choice. This machine obviously will need web server software installed.

5

1.

Class outline

Introduction (Lecture: 15; Lab: 0)

(a) Class Introductions
(b) Class Logistics
i. Class schedule



ii. Breaks

iii. Question policy

iv. Break room and restroom locations
v. Assumptions about your background

(c) Typographic conventions
2. Designing and coding secure programs (Lecture: 50; Lab: 30)

(a) What is a secure program?
(b) Common security myths

i. “We have a firewall”
1. “I use anti-virus software”

A. Example

(c) Why is Security Important?
(d) The Challenge

(e) Secure code is more reliable code
(f) Security versus usability

(g) Summary

g
(h) Lab
3. Threat models and risk management (Lecture: 45; Lab: 55)

(a) Introduction
i. Example

(b) The threat model
(c) The assets you are protecting
(d) Attackers
(e) Common attack goals
(f) Mitigating threats
(g) Examples
i. Password vault
ii. Web-based timesheet
(h) Risk analysis
(i) Failures of Imagination
(j) Summary

(k) Lab
4. Security and the software development life cycle (Lecture: 35; Lab: 20)

(a) Introduction
(b) Requirements

i. Example

ii. Example

iii. Use, Abuse, and Misuse cases
(c) Design/Architecture



i. Design is critical

ii. Properly-written specifications
(d) Code development

i. Implementation is critical

(e) Testing
(f) Operations/maintenance

(g) Agile development

(h) Penetrate and patch is the wrong approach
(i) Summary

(j) Lab
5. Input validation and representation (Lecture: 60; Lab: 35)

(a) Introduction
i. Example input validation problems
(b) Never trust the client

i. Example: 3D3.Com ShopFactory
ii. Example: Smartwin Technology CyberOffice Shopping Cart

(c) Never trust the server
(d) Never trust other programmers

i. Example: Linux kernel

(e) Beware Hidden User Input
(f) Solution: Whitelists
(g) Solution: Canonicalization

i. Example: NTFS
ii. Example: IIS and Nimda

(h) Solution: Taint tracking
(i) Summary
(i) Lab
6. Fail securely (Lecture: 25; Lab: 15)
(a) Introduction
(b) Failure-related code is often poorly written and tested
i. Examples

(¢) Proper failure state
(d) Complete error/exception handling

i. Example: Linux ELF binary loader

(e) Resource issues
(f) Failures take unexpected paths in the code
(g) Backwards Compatibility

i. Example: Windows file sharing
(h) Reporting Errors Securely



(i) Failing Functionally yet Securely
(j) Summary
(k) Lab

7. Logging (Lecture: 30; Lab: 35)
(a) The purposes of logs

(b) What to log

(¢) How to log

(d) Resource issues

(e) Distributed logging
(f) Log monitoring

(g) Sensitive data

(h) Summary

(i) Lab

8. State and the web (Lecture: 25; Lab: 65)

(a) Overview
(b) Ways of tracking state

i. Hidden fields in forms
ii. Cookies
iii. CGI parameters
iv. HTTP Referer field

(c) Session hijacking

(d) Solutions

(e) Example vulnerable code
(f) Testing for this problem
(g) Summary

g
(h) Lab
9. Code reviews (auditing) for security (Lecture: 45; Lab: 30)

(a) Why to audit

(b) How to audit

(¢) Automated code analysis tools
(d) Items for an audit checklist

i. Overall requirements and architecture issues
ii. Defense in Depth

iii. Compartmentalization

iv. Privileges

v. Authentication

vi. Authorization

vii. Cryptography

viii. Secure failure

ix. Input validation



x. Logging
xi. Sensitive data
xii. Race conditions
xiii. Scripting and extensibility
xiv. State and the web
xv. Deployment

(e) Summary
(f) Lab

10. Software testing for security (Lecture: 20; Lab: 30)

(a) Why to test

(b) Who should perform the testing
(c) How to test

(d) When to test

(e) Penetration testing and tools
(f) Limitations of Testing

(g) Summary

(h) Lab

Appendices

A. Defense in depth (Lecture: 20; Lab: 25)

(a) Introduction
(b) Example: Web-based timesheet application
(¢) Summary
(d) Lab
B. Least privilege (Lecture: 40; Lab: 20)

(a) Introduction
(b) Dropping privileges after obtaining a resource
(c) Separation of privilege
i. Implementing separation of privilege
ii. Example: OpenSSH
A. Applying separation of privilege to OpenSSH
iii. Example: NTP client
(d) Example: Applying least privilege to the web timesheet application
(e) Summary
(f) Lab
C. Compartmentalization (Lecture: 35; Lab: 20)

(a) Introduction
(b) Processes
(c) Filesystem Access Controls



(d) Mandatory Access Control
(e) Virtualization

i. Hardware Virtualization
A. Paravirtualization
ii. Operating System-Level Virtualization
iii. Application Virtualization
(f) Summary
(g) Lab
D. Erasing data (Lecture: 45; Lab: 20)
(a) Introduction
(b) Erasing Memory
i. Solutions
(c) Erasing Files
i. Examples
ii. Solutions
(d) Backups
(e) Application/System Design issues
(f) Summary
(g) Lab
E. Race conditions (Lecture: 25; Lab: 10)
(a) Introduction
(b) TOCTTOU race conditions

i. passwd command races
ii. Temporary Files
iii. Avoiding TOCTTOU problems
(¢) Memory corruption Race Conditions

1. Multithreaded Processes
ii. Signal race conditions
iii. OS Kernel race conditions

(d) Summary
(e) Race Conditions Lab
F. Cryptography Fundamentals (Lecture: 30; Lab: 25)

(a) Introduction
i. Cryptographic Applications
ii. Open design
(b) Limits of Cryptography
(¢) Cryptographic Primitives
i. Cryptographic Hash Functions



ii. Symmetric key encryption
iii. Public key encryption
(d) Digital signatures
(e) Random Numbers
(f) Parameter sizes
(g) Insecure Cryptography
(h) Do Not Innovate in Cryptography!
(i) Summary

(j) Lab
G. Using Cryptography (Lecture: 30; Lab: 30)

(a) Introduction
(b) Public Key Management
(c) Certificates
(d) Trust Models
(e) Example: PGP/GnuPG
(f) Example: SSL and TLS
(g) Using cryptography to improve security
(h) Standard strategies
(i) Standard Implementations
(j) Summary
(k) Lab
H. Authentication (Lecture: 30; Lab: 35)
(a) The Basics
(b) Authentication using secrets

i. The problem with passwords
ii. Authentication protocols for secrets

(c) Authentication using physical tokens
i. Smart cards
ii. SecurelD cards
(d) Biometrics
(e) Single sign-on
(f) US Authentication Standards
(g) Best Practices from OWASP
(h) Lab
I. Research directions (Lecture: 20; Lab: 0)

(a) Introduction

(b) Static Analysis

(¢) Dynamic Analysis
i. Limitations of Signatures and Specifications
ii. Anomaly detection



(d) Mitigation
(e) The Security Arms Race
(f) Summary

J. Final lab (Lecture: 0; Lab: 120)
(a) Lab



